Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Inorg Organomet Polym Mater ; : 1-16, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2297169

ABSTRACT

Nanotechnology has inscribed novel perception into the material science and one of the most extensively used nanomaterials is Zinc oxide nanoparticles (ZnO NPs) with healthcare and biomedical applications. Because of its outstanding biocompatibility, low toxicity, and low cost, ZnO NPs have become one of the most prominent metal oxide NPs in biological applications. This review highlights the different aspects of ZnO NPs, like their green synthesis as a substitute of conventional route due to avoidance of threat of hazardous, costly precursors and subsequent mostly therapeutic applications. Due to their wide bandwidth and high excitation binding energy, ZnO NPs have undergone extensive research. In addition to their potential applications as antibiotics, antioxidants, anti-diabetics, and cytotoxic agents, ZnO NPs also hold a promising future as an antiviral treatment for SARS-CoV-2. Zn has antiviral properties and may be effective against a variety of respiratory virus species, particularly SARS-CoV-2. This review includes a variety of topics, including the virus's structural properties, an overview of infection mechanism, and current COVID-19 treatments. Nanotechnology-based techniques for the prevention, diagnosis, and treatment of COVID-19 are also discussed in this review.

2.
Environ Res ; 217: 114906, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2245220

ABSTRACT

BACKGROUND: The world has witnessed a colossal death toll due to the novel coronavirus disease-2019 (COVID-19). A few environmental epidemiology studies have identified association of environmental factors (air pollution, greenness, temperature, etc.) with COVID-19 incidence and mortality, particularly in developed countries. India, being one of the most severely affected countries by the pandemic, still has a dearth of research exploring the linkages of environment and COVID-19 pandemic. OBJECTIVES: We evaluate whether district-level greenness exposure is associated with a reduced risk of COVID-19 deaths in India. METHODS: We used average normalized difference vegetation index (NDVI) from January to March 2019, derived by Oceansat-2 satellite, to represent district-level greenness exposure. COVID-19 death counts were obtained through May 1, 2021 (around the peak of the second wave) from an open portal: covid19india.org. We used hierarchical generalized negative binomial regressions to check the associations of greenness with COVID-19 death counts. Analyses were adjusted for air pollution (PM2.5), temperature, rainfall, population density, proportion of older adults (50 years and above), sex ratio over age 50, proportions of rural population, household overcrowding, materially deprived households, health facilities, and secondary school education. RESULTS: Our analyses found a significant association between greenness and reduced risk of COVID-19 deaths. Compared to the districts with the lowest NDVI (quintile 1), districts within quintiles 3, 4, and 5 have respectively, around 32% [MRR = 0.68 (95% CI: 0.51, 0.88)], 39% [MRR = 0.61 (95% CI: 0.46, 0.80)], and 47% [MRR = 0.53 (95% CI: 0.40, 0.71)] reduced risk of COVID-19 deaths. The association remains consistent for analyses restricted to districts with a rather good overall death registration (>80%). CONCLUSION: Though cause-of-death statistics are limited, we confirm that exposure to greenness was associated with reduced district-level COVID-19 deaths in India. However, material deprivation and air pollution modify this association.

3.
J Public Aff ; 21(4): e2729, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1320082

ABSTRACT

Household air pollution is a serious public health concern in India with more than half of the Indian households relying on solid fuel use. The long periods of lockdown related measures to control COVID-19 pandemic in India further aggravated the adverse health effects of household air pollution as millions Indians were exposed to high level of health-damaging air pollutants inside their homes. This commentary discusses the vulnerability of the socioeconomically disadvantaged population forced to stay indoors during the pandemic. Exposure to household air pollution has detrimental effects on health, which might put individuals at higher risk for complications related to COVID-19. A large proportion of socioeconomically disadvantaged section of the population were exposed to critical levels of household air pollution and more vulnerable to severe health effects of COVID-19. There is a pressing need to understand the aggravated health consequences of household air pollution in association with COVID-19.

4.
Respir Res ; 22(1): 99, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1169963

ABSTRACT

BACKGROUND: COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS: In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS: Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-ß1 (TGF-ß1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-ß1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION: Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Hypoxia/drug therapy , Justicia , Lung/drug effects , Plant Extracts/pharmacology , Pneumonia/prevention & control , Pulmonary Fibrosis/drug therapy , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/isolation & purification , Bleomycin , COVID-19/metabolism , COVID-19/virology , Cecum/microbiology , Cecum/surgery , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Inflammation Mediators/metabolism , Justicia/chemistry , Ligation , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/microbiology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sepsis/genetics , Sepsis/metabolism , Sepsis/microbiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL